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1 Introduction

In the context of programming systems, protection is the mechanism used to control access of

programs and users to resources, including data [PS85]. Protection is often introduced to provide

integrity, to prevent inappropriate use that would contravene some resource access policy that is

bene�cial to the users of a system. Protection may also be used to ensure security, but this is

a broader topic than the issues we wish to discuss. Our work is concerned with protection and

the design of an operating system that supports an object-oriented interface to the application.

Speci�cally, this paper examines the relationship between protection and object-oriented systems.

Protection can be enforced by convention or agreement amongst the users of the system to

program in a speci�c manner, by a compiler that statically checks protection rules are not violated

or inserts run time checks to verify the access rules are not violated at execution time, and by

hardware that prevents violation of access rules physically at execution time. Encapsulation is a

major object-oriented programming protection mechanism that restricts manipulation of objects

de�ned in the representation of an abstract data type from being accessed except by a set of prede-

�ned methods or operations. Encapsulation is bene�cial because it reduces the amount of coupling

between code fragments and data, encouraging modi�cation, reuse, porting, and understanding.

Encapsulation can be implemented by convention as in languages that do not have features that

are object-oriented, by compiler as in Smalltalk, or by hardware, as in various capability-based

computer architectures. Where capabilities are not built into a hardware architecture, hardware

protection may also be provided by a combination of hardware and operating system primitives. For

example, the supervisor/user state distinction or virtual memory mechanism may be used to pro-

vide hardware-enforced encapsulation. Protection by convention can easily be violated. Similarly,

protection by compilers depends on the e�ectiveness of the compiler, the nature of the language,

and whether multiple languages are used to build applications. Hardware-enforced protection o�ers

more security for access policies and can be applied to more general access problems.

Encapsulation is, however, only one aspect of an object-oriented system. As de�ned by [Weg87],

objects in object-oriented systems belong to classes and class hierarchies that can be incremen-

tally de�ned by an inheritance mechanism. In addition, [Lis87] demonstrated that polymorphism

through the use of type hierarchies is more signi�cant than inheritance hierarchies, and that both

kinds of hierarchies are useful in an object-oriented system.
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In our e�orts to build an object-oriented operating system that supports an object-oriented

application interface, we have discovered a need to split both inheritance hierarchies and type

hierarchies across hardware-enforced protection boundaries. The subject of this paper is an analysis

of the problems caused by splitting these object-oriented hierarchies. Section 2 presents some

motivating examples as to why we want to be able to split hierarchies across protection boundaries.

Section 3 gives background for the detailed analysis of splitting hierarchies that is in Section 4.

Section 5 describes our solution for the Choices operating system and C++.

2 Motivating Examples

Before we begin the analysis, we would like to propose a few motivating examples for our desire

to split object-oriented hierarchies across protection boundaries. While developing the Choices

object-oriented operating system, which is written in C++, we have encountered several categories

of situations in which it would be helpful to extend the object-oriented hierarchies out of a protected

kernel.

2.1 Providing System Services

The most fundamental category involves simply providing system services to users. For example, if

the operating system provides a Semaphore object to synchronize processes, user programs should

be allowed to invoke methods on the Semaphore as easily as the kernel itself can. This example

does not show an extension of an object-oriented hierarchy, but it does show an extension of the

use of a hierarchy.

2.2 Customizing Services at User Level

The next category involves customizing operating system services at the user level. For example,

there is an OutputStream type in Choices that has a write method to send data to the stream

and a 
ush method that is called when data is to be written out. We would like to be able to

provide a Bu�eredOutputStream in user space that overloads the write and 
ush methods to save

data in a local bu�er and reduces the number of times that system calls need to be made. The

Bu�eredOutputStream should be a subtype of OutputStream so the user can treat it as an Output-

Stream through the polymorphism of the type hierarchy. This example also shows an extension

of the implementation hierarchy in that the overloaded methods in Bu�eredOutputStream invoke

corresponding methods on the OutputStream type.

2.3 Customizing Services at an Intermediate Level

We would like to have a minimal kernel and to move many shared system services into an interme-

diate protection level. The kernel will be protected from the intermediate system services, and the

intermediate system services will be protected from user programs. There are many advantages to

a minimal kernel as demonstrated by other modern operating systems [CZ83, R

+

89, BA

+

89].

When there are more than two levels of protection, there will be cases where a type is de�ned on

one level, a subtype is de�ned on another level, and the type is used on a third level. For example,

there is a Timer type in Choices that de�nes start and await methods. We want to de�ne the Timer
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type at the minimal kernel level, de�ne a subtype called TimeoutTimer at an intermediate level, and

allow the user level to use the TimeoutTimer type and treat it as a Timer through polymorphism.

The Timer example also shows another kind of use of object-oriented hierarchies across protec-

tion boundaries: the minimal kernel may have cause to use a TimeoutTimer that is de�ned at the

intermediate level. The kernel only knows about Timers, but if it treats a TimeoutTimer as a Timer,

method calls will call out to the TimeoutTimer at the intermediate level.

2.4 Separating Policy from Mechanism

Another category is that of providing a mechanism at a protected lower level and a policy at a

less-protected higher level. For example, we want to allow higher levels to control the policy of

handling page faults. The operating system will de�ne an interface type called PageFaultPolicy and

methods implementing the default policy for handling a page fault. User programs will be able to

make a subtype of PageFaultPolicy and tell the operating system to invoke methods on the subtype

instead through polymorphism.

This same kind of feature could be provided without using subtypes, but it is a convenient way

to provide the feature in an object-oriented system.

3 Background

This section discusses several background topics that will be useful for our analysis.

3.1 Operating System Protection

Protection in operating systems is de�ned in terms of objects, subjects, protection domains, and

processes.

object A unit of data. In an object-oriented system, an object is more than just a unit of data:

an object is encapsulated such that only the classes that \own" them can manipulate them.

subject A unit of code. In an object-oriented system, each class is a subject.

protection domain A list of access rights to objects. Each subject is associated with one pro-

tection domain that speci�es the access rights that the subject has to objects. There can be

more than one subject for each protection domain. In our discussion, the access right that

we are concerned with is the ability to modify objects; that is, both read and write access

rights together.

process A thread of control. Processes wind their way through di�erent subjects, changing pro-

tection domains as they change from one subject to another. Changing from one protection

domain to another is called crossing a protection boundary. This occurs at the time a process

calls a method on an object that belongs to a subject in a di�erent protection domain than

the one it was executing in.
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3.2 Trust

In operating systems, di�erent kinds of trust relationships exist between subjects. For example,

subjects in a kernel are more trusted than subjects in applications, and application subjects do not

normally trust each other.

S1 S2

S4S3 S5

Figure 1: Trust Relationships

Figure 1 illustrates the trust relationships that can exist between subjects. Circles represent

subjects, boxes represent collections of objects, and arrows indicate an access right in the protection

domain from a subject to an object. These are the trust relationships between two subjects:

more trusted The more trusted subject is able to modify all objects belonging to the less trusted

subject. The protection domain of the more trusted subject is a superset of the protection

domain of the other subject. S1 and S2 are more trusted than the other subjects in the �gure.

They could be two parts of the kernel of an operating system.

less trusted The converse of more trusted: the protection domain of the less trusted subject is a

subset of the protection domain of the other subject.

partially trusted The partially trusted subject is able to modify some of the objects that belong

to the other subject but not all. S5 partially trusts S4. They could be two applications that

are working together and have some shared virtual memory.

mutually distrusted Mutually distrusted subjects do not trust each other with any of the other's

objects. S3 and S4 mutually distrust each other. They could be two independent applications.

mutually trusted Mutually trusted subjects trust each other with all of each other's objects.

They both have the same protection domain. S1 and S2 mutually trust each other.

When a subject is more trusted than another subject, a protection boundary is placed between

them so the less trusted subject cannot modify the objects belonging to the more trusted subject.

With this kind of a trust relationship, we say that the two subjects are at di�erent protection levels.
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Even though trusted subjects can modify the objects that belong to subjects that trust them,

that does not mean they will modify the objects. Trust simply implies that one subject is willing

to believe that the other subject will not modify more than it is supposed to, including that the

trusted subject will abide by any compile-time or run-time enforcement of object encapsulation. The

existence of trust relationships, however, is important to our analysis of splitting object-oriented

hierarchies across protection boundaries.

3.3 Inheritance, Delegation, and Forwarding

Inheritance and delegation are two ways of looking at object-oriented implementation hierarchies.

The Treaty of Orlando [LSU87] identi�es several kinds of distinctions between inheritance and

delegation; when we use the two terms in this paper, the distinguishing property that we imply

is that of whether the sharing in the implementation hierarchy is static or dynamic. That is,

inheritance speci�es that the sharing pattern is staticly determined by the time an object is created,

and delegation allows the sharing to be determined dynamically during run-time. C++ [Str85] and

Smalltalk [GR83] are inheritance-based languages and Self [US87, CUL89] is a delegation-based

language.

The way that delegation-based languages provide dynamic determination of the sharing pattern

is by giving each level of the implementation hierarchy a separate object, and forwarding unrecog-

nized methods to the parent object. The parent object can be changed at any time by choosing to

forward methods to a di�erent object.

True delegation is more than just forwarding a method call to the parent object [Lie86]. In true

delegation (and inheritance), if a child overloads a method that its parent invokes from a di�erent

method, the child's version of the method will be used. That is, the method gets invoked on the

original object. On the other hand, if method calls are simply forwarded to the parent object, the

parent would only invoke its own version of the method. For example, suppose a parent de�nes

a method M1 that invokes another of its methods M2, and its child rede�nes method M2. When

a call to M1 comes to the child, it will forward the call to its parent. With simple forwarding,

the parent will invoke its own M2, but with delegation, the parent will invoke the child's M2.

Delegation-based languages implement this by sending a reference to the original child object along

with method calls, and always beginning with the child object when invoking methods.

4 Analysis

We now turn to our analysis of splitting object-oriented hierarchies across protection boundaries.

We will address the issues related to implementation hierarchies and to type hierarchies separately.

These are the questions that we need to address:

Implementation hierarchies

1.1. What is the protection a�orded to the portions of an object that correspond to di�erent

levels of an implementation hierarchy that spans protection boundaries? That is, should

the portions of the object that belong to levels of the implementation hierarchy on

di�erent sides of protection boundaries be protected at one protection level or at di�erent

protection levels?
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1.1.1. If at one level, should the object be placed at the protection level of the more

trusted portion of the hierarchy or the less trusted level? What are the problems

with placing the object at one protectoin level? Are there situations in which placing

the object at one level is acceptable and others in which it is unacceptable? If so,

what are the distinguishing factors?

1.1.2. If at di�erent protection levels, what additional problems are caused? Should the

forwarding of method calls between the objects at di�erent levels be true delegation

or simple forwarding?

1.2. Does it make a di�erence if a child in the implementation hierarchy does not trust its

parent?

Type hierarchies

2.1. What are the concerns when polymorphism in a type hierarchy, with types and subtypes

on di�erent sides of protection boundaries, results in a method call to a subject that is

not trusted? Should a subject be able to control whether an untrusted subtype is able

to take the place of a trusted type?

2.2. What are the concerns when a type that is available across protection boundaries results

in a method call from an untrusted subject? What precautions should be taken by the

called subject?

2.2.1. Should an untrusted subject be allowed to invoke methods on all of the objects

belonging to the called subject?

2.2.2. Should an untrusted subject be allowed to invoke all of the methods on the objects

it has the right to invoke methods on, or should some of the methods be restricted

from use by untrusted subjects?

2.2.3. What precautions should be taken when an untrusted subject attempts to pass

in parameters that refer to other objects?

2.3. Should a subject be able to create or delete objects that belong to a subject that does

not trust it?

2.4. Are the concerns di�erent if the method calls are between mutually distrustful or par-

tially distrustful subjects?

These questions form an outline of our analysis.

4.1 Implementation Hierarchy Split Across Protection Boundaries

What happens when an implementation hierarchy is split across protection boundaries? Not only

code is shared in an object-oriented implementation hierarchy. Each level of the hierarchy may also

add data members to the de�nition of objects. The data members added for a particular level are

primarily intended to be accessed and modi�ed by the code for that level of the hierarchy, although

some languages make exceptions and allow code further down the hierarchy to modify the data.

(C++ even goes so far as to allow parts of some objects, the public parts, to be modi�ed by any

subject.)
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4.1.1 Uni�ed vs. Split Objects

Should the portions of an object belonging to di�erent levels in an implementation hierarchy be

protected at one level or should the object be split so it can be protected at di�erent levels?

Languages such as C++ and Smalltalk place objects in contiguous memory. If protection hardware

is not �ne-grained enough to distinguish between portions of an object, it is di�cult to protect

portions of an object at di�erent levels.

Objects at a Single Protection Level Assume that an entire object must be in contiguous

memory and that an object can only be protected by hardware at a single protection level. Consider

the case of a two-level hierarchy where the parent subject is more trusted than the child subject.

At what protection level should the object then be placed? Clearly, placing the entire object

at the parent's protection level is not appropriate because the child would be prevented from

manipulating its own portion of the object. Therefore the object should be placed at the child's

protection level.

What are the implications of placing the object at the child's lower protection level? The parent

subject cannot trust that the child has left the parent's portion of the object intact because the

child has complete access to the object. This is acceptable if one of the following special cases is

true:

1. The parent has not de�ned any data in the object. If there is no data, there is nothing for

the child to modify.

2. The parent causes no side e�ects based on the data in the object that the child does not

have the right to cause itself. For example, the parent might only modify the object itself,

not other objects or other protected data that the parent has the ability to modify, such as

\class" data. If a parent did cause side e�ects on protected data, the less trusted child could

circumvent the protection by manipulating the parent's portion of the object which could

cause the parent to modify the protected data to the child's advantage.

3. The parent validates the data that it has de�ned at the beginning of every method to ensure

that any side e�ects that it will cause will not violate trust. For example, perhaps some data

items will cause correct operation if they have any of a range of values. If that is so, the parent

must check to make sure the data items are still within the correct range; it cannot trust that

the data items have been left intact because the less trusted child may have modi�ed them.

Few situations are covered by the �rst case because classes usually de�ne data; however, it is

easy for the compiler or run-time system to verify whether the parent has de�ned data. There may

be many situations covered by the second case where the parent would cause no harmful side e�ects

based on object data, but that is di�cult to verify automatically. More situations will be covered

by the third case, but it requires careful analysis by the programmer for each situation and is prone

to error. Even the third case does not cover all situations: it may be that the data values were

in
uenced by more trusted subjects and any modi�cation to their value by a less trusted subject

would cause incorrect operation. Also, if the child has concurrent threads of control, a di�erent

thread could modify the data during the execution of a parent method after the parent had veri�ed

the data.
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What if the object is placed at the child's lower protection level, and the parent lowers its

protection level to the child's level while operating on the object? That would prevent the parent

from causing any side e�ects that the child could not cause itself. This is much like the second

case above, and it veri�es correct operation. It can be easily implemented by essentially copying

the code for the parent subject to the level of the less trusted child subject. It is appealing for the

cases in which it may be applied because no protection boundaries need to be crossed, and this

improves performance. However, it is too restrictive for the general case because the parent might

need to cause side e�ects at the elevated protection level, especially if the parent is an operating

system service.

The same analysis applies to a multi-level protection hierarchy, not just a two-level hierarchy,

at the point at which the trust level changes. The analysis can simply be applied iteratively.

Thus, placing the entire object at a single protection level is not appropriate for the general case

in an implementation hierarchy where children subjects are less trusted than their parent subjects.

Objects Split Across Multiple Protection Levels Since placing an object at a single pro-

tection level for an implementation hierarchy split across protection levels is not appropriate for all

cases, objects should be split across the protection levels as well. The portions of the object that

belong to each level in the implementation are placed at the protection level of the subject they

belong to. The child object then delegates methods it does not recognize to its parent object.

Note that the ability to dynamically determine the parent class is not the motivation for using

delegation here. The motivation is simply to be able to split an object into separate portions. If the

system does not allow dynamic determination of the parent, it may be technically considered an

inheritance system even though the object is split. That does not make a di�erence for protection

purposes.

What additional problems are caused by splitting an object across protection levels? Some

inheritance-based languages allow child subjects to directly access the data members of parent

objects. Clearly this cannot be allowed across protection boundaries. It is not usually allowed

in delegation-based languages, and [Sny86] advocates that all access to parent instance variables

should be through methods even when protection boundaries do not exist [Sny86].

Some languages also distinguish between methods that are callable only by child subjects and

methods that are callable by all subjects, for example C++ with its protected and public methods.

Unfortunately, this cannot be strictly enforced across protection boundaries because an extra child

can be easily created that makes the protected methods available to other subjects. Language

restrictions can still be used, but programmers of the more trusted subjects should not assume that

enforcement of the restriction is strict.

Should true delegation be used between the child object and the parent object, or should simple

forwarding be used? If true delegation were used, a method call by the parent object could result in

a call back to the child object if the child overloaded a parent method. Since the child in this case

is less trusted than the parent, it may be that forwarding is better so the parent does not invoke

an untrusted method when it is expecting a trusted method. Method calls to untrusted subjects

have to be handled carefully, as we will discuss further in Section 4.2.1.
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4.1.2 Untrusted Parents

Up to this point we have only been analyzing the case when a parent is more trusted than a child.

Does it make a di�erence if the child in the implementation hierarchy does not trust its parent?

This could be the case if either the child and parent mutually distrust each other or if the child

is more trusted than the parent. Essentially, it makes very little di�erence to the analysis; the

result of needing to split the object across the protection boundaries is the same. If objects could

not be split and the parent is less trusted than the child, the object would have to be placed with

the child, and the roles reversed in the analysis. If the objects could be split and mutual distrust

existed between the parent and the child, the object would have to be made accessible to both the

parent and child, and they would both have to protect against unauthorized modi�cation by the

other by verifying the data on every method call.

Delegating a method to an untrusted parent would result in a method call to an untrusted

subject. Again, those calls have to be handled carefully as we will discuss further.

4.2 Type Hierarchy Split Across Protection Boundaries

What happens when a type hierarchy is split across protection boundaries? A process crosses a

protection boundary when it calls a method on an object that is at a di�erent protection level.

The discussion is divided into three parts: method calls to untrusted subjects, method calls from

untrusted subjects, and method calls between mutually distrustful or partially distrustful subjects.

4.2.1 Calls to Untrusted Subjects

What are the concerns when a subtype de�ned by a less trusted subject can take the place of a

trusted type? Object-oriented systems use type hierarchies to provide polymorphism. Subtypes in

a hierarchy can transparently take the place of supertypes. Making a method call on an object of

an untrusted type will cross the protection boundary to the level of the untrusted subject before

the untrusted method is executed.

Should a subject be able to control whether an untrusted subtype can take the place of a trusted

type? There are reasons why a subject may not want to allow particular object types to be replaced

by less trusted subtype objects. For one thing, the method can not be trusted to do what it is

supposed to do, and return values may need to be validated. The method may never return at all.

Another potential problem is that a subject may want to pass references to data items that are not

accessible to the untrusted subjects. Also, crossing protection boundaries take time, and that may

not be acceptable in some cases.

In general, a system with a type hierarchy that can cross protection boundaries should allow

subjects to control whether less trusted subtype objects can take the place of trusted type objects.

4.2.2 Calls From Untrusted Subjects

What are the concerns when a type that is available across protection boundaries results in method

calls from untrusted subjects? The concerns that we will address in this section are valid whether

or not a type-subtype hierarchy crosses the protection boundaries. The concerns are simply caused

by the use of a type across a boundary.

What precautions need to be taken when an untrusted subject calls a method on an object?

Precautions are necessary to prevent the untrusted subject from circumventing protection by taking

9



advantage of the increased privileges of the subject that owns the object. Either the subject or a

subject it trusts should verify that the following are true:

Method Calls on All Objects? The untrusted subject must �rst of all have the capability

to invoke methods on that object. Since calls to methods at di�erent protection levels �rst cross

over to the object's protection level, untrusted subjects should not be allowed to call methods on

all objects in a system. A subject will want to selectively give away the capability for untrusted

subjects to access its objects. For example, referring back to Figure 1, suppose there are two

untrusted subjects S3 and S4 that mutually distrust each other and a trusted subject S1 that is

more trusted than both. In that case, S1 might give away the capability to access one object to S3

and give away the capability to access a di�erent object to S4, but not give away the capability to

access a single object to both untrusted subjects. Also, there may be objects that should not be

accessible to any untrusted subject.

All Method Calls on Objects? The untrusted subject must also be invoking a method that is

accessible across protection boundaries. There may be individual methods on the objects accessible

across protection boundaries that should not be available to untrusted subjects. Programmers often

want to have methods that are only used for internal purposes. Also, methods that are callable

across protection boundaries must be written with the awareness that callers are not to be trusted:

for example, parameters may need to be checked to ensure that they are within a valid range.

A system that supports method calls across protection boundaries should provide a mechanism

so a programmer of a more trusted subject can control which methods can be called across bound-

aries. If a special mechanism does not exist, the programmer could introduce an intermediate

object and subject that only exposes the methods to be callable across boundaries and forwards

method calls to the real object, but that is inconvenient.

Parameters Referring to Other Objects If there are any parameters passed to the method

that refer to other objects, the untrusted subject must have capabilities to invoke methods on those

objects as well. If they did not but the called subject did, the called subject might use its elevated

capabilities to invoke methods on the objects, violating trust.

In addition to having the capability to invoke methods on objects that it passes in, the untrusted

subject must pass in objects of correct types. A correct type is either the type that the called subject

expects or a subtype in the type hierarchy. If an object of an incorrect type were allowed to be

passed through to the called subject, the methods that the called subject expects to be available

on the object would not be available. In a language like C++ that has no run-time type checking,

that could cause severe consequences; it could even cause the system to crash.

4.2.3 Creation and Deletion of Objects by Untrusted Subjects

Should a trusted subject be able to create or delete objects belonging to a subject that does not

trust it? Clearly the creation and deletion of objects must to be under the control of the subjects

that own them, but subjects should be able to selectively give away the capability for untrusted

subjects to create or delete its objects. Often objects exist to provide services for the untrusted

subjects, and the untrusted subjects need to be able to request more services and to relinquish

them.
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4.2.4 Calls Between Mutually or Partially Distrustful Subjects

Are the concerns di�erent if the method calls are di�erent between mutually or partially distrustful

subjects? No, calls across protection boundaries between two subjects that mutually distrust each

other simply have the problems of both the previous categories. The invoker of a method views

the invocation as a call to an untrusted subject, and the owner of the method views the call as a

call from an untrusted subject. Each subject protects itself against the other subject both when it

calls and when it is called. Validations can either be done by the two subjects individually or by a

mutually trusted subject.

Partially trusted subjects can be decomposed into their trusted and untrusted components. A

call from a partially trusted subject only needs to be protected against the components of the

calling subject that are not trusted, and likewise a call to a partially trusted subject only needs to

protect against the components of the called subject that are not trusted.

5 The Choices Solution

This section describes a system that is object-oriented across protection boundaries. The system

is a part of the Choices operating system, and has been designed using the principles discussed

in the analysis Section 4. A prototype of this part of Choices has been developed, and a full

implementation is in progress.

The two major constraints on this system are the use of the C++ language and the use of

traditional processor hardware. Choices is written in C++ and a transparent C++ interface across

protection boundaries is desired. Choices currently runs on National NS32332, Motorola 68030,

and Intel 80386 processors, so the only hardware protection available is the memory management

units and in the case of the Intel 80386, segmentation.

C++ does not make a distinction between the implementation hierarchy and the type hierarchy,

which simpli�es the design somewhat. The C++ language does type checking at compile time and it

does not have any notion of the type of objects at run time; to get around that de�ciency, Choices

keeps track of the type hierarchy by use of �rst-class classes [IL90, MCK91].

5.1 Protection Model

The protection model that we have chosen is a partitioned rings of protection model. Each successive

outer ring is less trusted than the further-in rings. Furthermore, each ring can be partitioned into

mutually distrustful regions. In order to make the interface as transparent to C++ as possible,

address spaces are shared across rings although rings cannot access the addresses of further-in

rings. Partitions within a single ring share the same range of virtual addresses, but represent

di�erent memory in di�erent address spaces.

Figure 2 shows an example with four rings of protection. A partition of one ring is called a

ring-partition. The number in each ring-partition is the ring number, and the letters represent

the partition identi�er. The last letter in each identi�er distinguishes a ring-partition from other

ring-partitions that belong to the same partition of the next inner ring. The other letters identify

the ring-partition in the next inner ring. Ring-partitions 3aba and 3abb both share the same range

of virtual addresses and mutually distrust each other, and ring-partition 2ab is mapped into the

address space of both of them and is more trusted than both of them.

These are the reasons why this model of protection was chosen:
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Figure 2: Four Partitioned Protection Rings Example

1. Due to the nature of the C++ language and our protection hardware, �ne-grained protection

is not practical. Instead, objects and subjects are grouped into relatively large portions that

trust each other. Within a group of objects, no protection check overhead is incurred to

invoke methods.

2. The traditional operating system approach of just two levels of protection, kernel and appli-

cation, is inadequate. We want to be able to move shared services out of the kernel and into

an intermediate level so we can have a minimal kernel. In addition, we want to support ap-

plication developers who would like to have their own protected services shared across several

higher-level applications.

Layering the trust levels allow inner shared levels to use shared memory semantics rather

than message passing semantics. That is, if the shared services were forced to be placed at

the outer level in their own address spaces, messages have to be sent to them to gain access

to their services. If they are at an inner trust level, they have direct access to the memory of

the users they serve.

3. The partitioning of the outermost protection ring into separate address spaces that are mutu-

ally distrustful is common in operating systems. We chose to allow the intermediate rings to

also be partitioned to enable a protected operating system research environment on a running

system, and to allow higher-level shared application libraries to coexist on the same system

without having to trust each other.

The implementation of the partioned rings of protection is processor dependent. Unfortunately,
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all of our processors only support two protection levels in the memory management units. However,

multiple rings can still be achieved by using supervisor mode to implement the innermost ring and

the user mode for the outer rings. On the National 32332 and Motorola 68030 processors, we

use a separate �rst-level page table for each outer ring partition, and on the Intel 80386, we take

advantage of the segmentation hardware to avoid the page table switch on ring crossings. For more

details see [Dyk90].

5.2 Proxy Objects

Objects are represented outside of their ring-partitions with proxy objects [Rus90]. A proxy object

gives its user the capability to invoke methods on the object it represents. The user of a proxy

object is unaware of its existence and treats it as if it is the real object. The methods of a proxy

object are actually stubs that trap to the kernel and translate the method calls into calls on the

real object at the appropriate protection level.

A proxy object may exist between any two ring-partitions, but only inward calls from an outer

ring to an inner ring (the most common case) can take advantage of the shared address spaces.

That is, code in an outer ring can pass references to data in its own ring-partition and expect the

inner ring to be able to access it. Outward calls from an inner ring to an outer ring, or cross calls

across di�erent address spaces cannot pass references to data in their own spaces and expect the

called ring-partition to be able to access the data.

5.3 Proxify++

To assist with addressing the concerns discussed in Section 4, a tool called Proxify++ has been

created. This tool examines the de�nitions of C++ classes and generates information about each

class. Proxify++ recognizes a new keyword called proxiable that identi�es each method that can

be called through a proxy. This keyword is stripped out by the C-preprocessor when the C++

compiler examines the class de�nitions, so no modi�cations are needed to the C++ compiler itself.

5.3.1 Calls from Untrusted Subjects

In order to do the checks on calls from untrusted subjects discussed in Section 4.2.2, Proxify++

generates a table of information about each proxiable method. The table lists the number of

parameters and the types of parameters that refer to other proxiable objects, and the type of the

return value of the method. The proxy trap handler uses this table to do the checks.

If a parameter refers to an object that is a proxy to another object, the proxy trap handler

veri�es that the caller has the right to use that proxy. If the proxy is to an object that is does not

trust the caller, the trap handler checks the type of the real object to verify that it is also of the

correct type or a subtype in the class hierarchy. (Types are determined by asking the object what

its type is, so the type of an object that belongs to an untrusted caller cannot be believed). In

addition, the trap handler strips o� proxies to objects and, if the real object is not in the callee's

ring-partition, a new proxy is allocated so the callee can use the object (recall that a proxy can

only be used by a single ring-partition). When the method returns to the trap handler, and if the

method returns a reference to a proxiable object, the trap handler allocates a proxy to that object

for the caller before returning to the caller.
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5.3.2 Untrusted Subtypes Replacing Trusted Types

Section 4.2.1 states that a mechanism should be provided to allow the programmer to control when

an untrusted subtype can take the place of a trusted parent type. Proxify++ supports this by

recognizing when the proxiable keyword is used to identify an entire class. If the class de�nition

is marked as proxiable, then untrusted subtypes may take the place of a more trusted type. The

proxy trap handler enforces this by only allowing an untrusted caller to pass in an object from

its own space when the type of a parameter to the called method is of a class that is marked as

proxiable.

5.3.3 Constructors and Destructors

If a constructor is marked as proxiable, then an object of that type may be created by a untrusted

subject. This is the control mechanism on creation of objects discussed in Section 4.2.3. Proxify++

recognizes proxiable constructors specially and prepares a separate list of these constructors. This

list is used to create constructor stubs to be linked with the untrusted subject code, and to create

a table that the more trusted subject code uses to translate the stub calls into a call on the real

constructor. This enables the programmer of the untrusted subjects to do a new on trusted objects

as if they were local objects, and to get back a proxy to the real object.

Destructors on proxied objects are not called directly by users of the proxy objects. When the

user of a proxy object calls the destructor, the proxy object itself is deleted instead. When the

proxy object is deleted, the reference count on the real object is decremented by one, causing the

real object to get deleted only if it is not being used by any other subjects.

5.3.4 Alternate Class Descriptions

Marking methods as proxiable is the mechanism used to control which methods are callable by

untrusted subjects as discussed in Section 4.2.2. As mentioned above, Proxify++ enforces that by

only listing information about those methods that are proxiable in the table that the proxy trap

handler uses. Proxify++ also generates alternate class descriptions header �les that the subjects

at di�erent trust levels include. These alternate class descriptions only list the methods that are

callable, so compile-time checks can notify programmers of untrusted subjects if they accidentally

try to call methods that are not proxiable. The alternate class descriptions also eliminate all

implementation details, so they have the added advantage of preventing recompilation of code that

uses the proxied objects as long as the interface stays the same.

5.3.5 Implementation Hierarchy Across Boundaries

As discussed in Section 4.1.1, the only general way to split an implementation hierarchy across

protection boundaries is to split the object so the parts of the object that belong to each level in

the hierarchy are protected at di�erent levels. C++ allocates objects out of contiguous memory, so

we make separate C++ objects. Child objects forward method calls that they do not handle to their

parents objects.

As mentioned above, Proxify++ creates an alternate class description for the users of a class

callable across protection boundaries. This class is of the same name as the original but only

contains space for a pointer to a proxy to the real object. Subclasses inherit the data de�ned in

the parent class, so space for the pointer to the proxy object is reserved in the subclasses.
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Also as mentioned above, stubs are generated for class constructors using a list made by Prox-

ify++. Each constructor stub creates a proxy to a new real object of that type and also detects

whether it is invoked directly through a new or indirectly through the constructor of a subclass.

If the constructor stub is called through a subclass constructor, the pointer space in the subclass

object is �lled in with the pointer to the proxy object.

In addition, the method table that Proxify++ generates is used to make a stub for each proxiable

method in the class. The stub simply invokes the corresponding method on the proxy object using

the pointer saved in the object. The method stubs are there so they can be inherited by subclasses,

making the forwarding transparent to the programmers of the subclasses. A destructor stub is also

made to delete the proxy object; the subclass destructor calls that automatically.

Note that this scheme only forwards methods to the parent objects, it is not true delegation.

That is, once the method has been forwarded to the parent object, and if the parent calls another

method in the same class that the child has overloaded, the child's method will not be invoked. In

order to simulate true delegation, a reference to the original object has to be passed as a parameter

to the parent method. This is a recognized way to simulate delegation in C++ [JZ91].

6 Conclusions

1. There are good reasons to split object-oriented hierarchies across protection boundaries, es-

pecially for an object-oriented operating system with an object-oriented application interface.

2. If an implementation hierarchy is split across protection boundaries, with a parent and a

child on di�erent sides of a boundary, the portion of a de�ned object belonging to the parent

should be on the parent's side of the protection boundary and the portion of the de�ned

object belonging to the child should be on the child's side of the protection boundary. The

child object should then delegate or forward unrecognized method calls to its parent object.

3. If a type hierarchy is split across protection boundaries, subjects need to protect themselves

both when calling untrusted subjects and when being called by untrusted subjects. Calling

untrusted subjects occurs when an untrusted subtype in a type hierarchy takes the place of

a trusted type due to polymorphism. Calls from an untrusted subject can come any time a

type is made available to untrusted subjects. Called subjects should protect themselves to

ensure that an untrusted subject only calls methods that it is allowed to call on objects it is

allowed to call methods on, and to ensure that the untrusted subject does not try to overstep

its privileges by passing parameters that refer to objects that it does not have access to or

that are of an incorrect type.

4. Splitting of object-oriented hierarchies across protection boundaries can be accomplished

practically, as we have demonstrated using C++ and the Choices operating system.

Acknowledgements

Thanks to Ralph Johnson, Peter Madany, See-mong Tan, Aamod Sane, Panos Kougiouris, Bjorn

Helgaas, and Ruth Dykstra for providing many helpful suggestions for revising this paper.

15



References

[BA

+

89] J. M. Bernabeu-Auban et al. The architecture of Ra: a kernel for Clouds. In Proceed-

ings of the Twenty-Second Annual Hawaii International Converence on System Sciences,

pages 936{945 vol. 2. IEEE, January 1989.

[CUL89] Craig Chambers, David Ungar, and Elgin Lee. An E�cient Implementation of SELF. In

Proceedings of OOPSLA '89, pages 49{70. ACM SIGPLAN, October 1989.

[CZ83] D. R. Cheriton and W. Zwaenepoel. The distributed V kernel and its performance for

diskless workstations. Operating Systems Review, 17(5):128{140, October 1983.

[Dyk90] David W. Dykstra. Hardware Enforced Protection for Object-Oriented Operating

Systems. Technical Report UIUCDCS-R-91-1666, University of Illinois at Urbana-

Champaign, December 1990.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.

Addison-Wesley, Reading, MA, 1983.

[IL90] John A. Interrante and Mark A. Linton. Run-time Access to Type Information in C++. In

Proceedings of the USENIX C++ Conference, pages 233{240, San Francisco, California,

April 1990.

[JZ91] Ralph E. Johnson and Jonathon M. Zweig. Delegation in C++. Journal of Object-Oriented

Programming, 1991. Submitted for publication.

[Lie86] Henry Lieberman. Using Prototypical Objects to Implement Shared Behavior. In Pro-

ceedings of OOPSLA '86, pages 214{223. ACM SIGPLAN, September 1986.

[Lis87] Barbara Liskov. Data Abstraction and Hierarchy. In Addendum to the Proceedings of

OOPSLA '87, pages 17{34. ACM SIGPLAN, October 1987.

[LSU87] Henry Lieberman, Lynn Andrea Stein, and David Ungar. Of Types and Prototypes: The

Treaty of Orlando. In Addendum to the Proceedings of OOPSLA '87, pages 43{44. ACM

SIGPLAN, October 1987.

[MCK91] Peter W. Madany, Roy H. Campbell, and Panos Kougiouris. Experiences Building an

Object-Oriented System in C++. In Proceedings of the Technology of Object-Oriented

Languages and Systems Conference, Paris, France, March 1991.

[PS85] Jim Peterson and Avi Silberschatz. Operating System Concepts, chapter 11. Addison-

Wesley, Reading, MA, 1985.

[R

+

89] R. Rashid et al. Mach: a system software kernel. In Digest of Papers: COMPCON

Spring 89, pages 176{178, San Francisco, California, 1989.

[Rus90] Vincent F. Russo. An Object-Oriented Operating System. PhD thesis, University of

Illinois at Urbana-Champaign, October 1990.

[Sny86] Alan Snyder. Encapsulation and Inheritance in Object-Oriented Programming Lan-

guages. In Proceedings of OOPSLA '86, pages 38{45. ACM SIGPLAN, September 1986.

16



[Str85] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA,

1985.

[US87] David Ungar and Randall B. Smith. Self: The Power of Simplicity. In Proceedings of

OOPSLA '87, pages 227{242. ACM SIGPLAN, October 1987.

[Weg87] Peter Wegner. Dimensions of Object-Based Language Design. In Proceedings of OOPSLA

'87, pages 168{182. ACM SIGPLAN, October 1987.

17


